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Quantum-fluctuation-induced spatial stochastic resonance at zero temperature
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We consider a model in which the quantum fluctuation can be controlled and show that the system responds
to a spatially periodic external field at zero temperature. This signifies the occurrence of spatial stochastic
resonance where the fluctuations are purely quantum in nature. Various features of the phenomenon are
discussed.
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The phenomenon of stochastic resonaf8®) is pre-  Our system is a periodically driven Ising model in a trans-
cisely the enhancement of response to an external field witkierse field at zero temperature. The strength of the transverse
the help of noise. SR is manifested in bistable systemdjeld is a measure of the quantum fluctuations and can be
where the fluctuations can drive the system from one energguned.
minimum to the other. As a function of the noise, the re- Although it occurs in both cases, the mechanisms of SR in
sponse typically shows a maximum value at resonance. Thiéelds periodic in time and spatially modulated fields are in-
basic features required to observe stochastic resonance dfisically different. In stochastic resonance in presence of
simple: an energy barrier, a weak external periodic signalime dependent fields, there are resonant transitions between
and a noise source. SR, which is observed in many naturdhe two potential wells of the bistable system. It is achieved
phenomena, has therefore important applications in a varietyhen the time period of the temporal field is comparable to
of research areas, including nonlinear optics, solid state dgwice the system’s own time scale of transitions between the
vices, and even neurophysiology. neighboring potential wells, the rate of which is given by the

Although most of the studies consider classical systemd<ramer’s rate. In presence of a spatially periodic field, on the
stochastic resonance in quantum systems have attracted a @her hand, resonance implies transitions to a state with spa-
of attention recently{1—4]. In the quantum systems, the tial correlations commensurate to those of the external field.
quantum mechanical tunneling provides an additional chanThe symmetric double well potential gets distorted differ-
nel to overcome a potential barrier. At exactly zero temperaently in the two cases, although fluctuation induced transi-
ture, some numerical results for the tunneling phenomena aféons are responsible for resonance in both. In the spatially
available for the periodically driven quantum double well periodic field, the system reaches an equilibrium and study-
systerm[2]. The noise is purely quantum in natureTat 0. A ing the static properties are sufficient. Instead of time scales
systematic study of the variation of a response function wittas in time dependent fields, one has to compare the length
the noise is not available here due to the inherent complexiscales in the spatially modulated field. The field tends to
ties of the dynamical systef2]; e.g., tunneling is enhanced form domains of size of the order of half of its wavelength.
for high and low frequency limits but it may altogether be At resonance, the correlation length of the equilibrium state
destroyedcoherent destruction of tunnelinin the interme-  has to be comparable to half the spatial periodicity or wave-
diate range. At very low temperatures, where quantum fluclength of the field.
tuations still dominate, investigation on quantum stochastic The lattice periodicity plays an important role in a spa-
resonancegQSR is effectively reduced to the study of the tially periodic field. The wavelength of the field may be ei-
dissipative dynamics of a periodically driven spin-boson systher commensurate or incommensurate to the lattice period-
tem[1,4]. The noise here is characterized by the temperaturi€ity. In the present study, we consider the commensurate
of the thermal bath and by the coupling of the bistable syscase only. The case of incommensurate field has not been
tem to the environment. studied for the classical case even.

Recent results in some classical systems have shown that The transverse Ising system in a spatially periodic field
the positive role of noise to enable response to a signal cagan be described by the Hamiltonian
by no means be restricted to temporal fields only and is more N N
universal in naturd5,6]. Even when the field is spatially _ 7oz . X
periodic, it can induce spatial modulations in a bistable sys- H= ‘321 38'“_21 hiS _FZ Si @
tem with the help of noise.

We report here that one can achieve QSR &0 in a  Hereh; is the spatially modulated field ardd the transverse
different quantum system, in which the response can be studield. The form ofh; is like this: h;=hy ati=(n\+1) to
ied as a function of the quantum noise. Motivated by the(2n+1)A/2 (n=0,1,... N/A\—1) and—h, elsewhere. The
occurrence of spatial SR in classical systems, we take th&avelength of the field is denoted by. In principle the
external field to be periodic in space in the quantum casemodulated field can be chosen to be of any form, for sim-

plicity we choose a square wave form. The Hamiltonian
is comparable to that of the transverse Ising model in a field
*Email address: paro@cucc.ernet.in periodic in time[7,8] which is studied in the context of quan-
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tum dynamical phenomena. We consider a spatial equivalen -0.12
and will be commenting on the comparable features later in 0121 L
this paper. ’
In the absence of the longitudinal field, the system has & -0.122 |-
guantum critical point af'/J=1 [9]. With the field, which is (S7) -0.123 -
7y -0.

competing in nature, the phase transitions inltheh, plane
have been recently studidd0]. The system shows a con- -0.124
tinuous order-disorder phase transition fraMJ=1 at hg

=0 to I'/J=0 ath,=4J/\. Beyond this value ohy, the 0125 -
system is field dominated and no phase transition can occu -0.126 : ' : : . ' '
here. Thus, our study will be limited to the regidn, o0 2 4 6 ;5 10 12 14 16
<4\/J, beyond which the system responds to the field spon-
taneouslyI'=0,hy=4J/\ is a multiphase point. The model
has the additional feature that the competing field and the 0.15
tunneling field scale similarly close to criticality. 01k
We obtain the average correlations between the local
fields and spin components in the longitudif@l direction: 0.05 -
171 (S 0r
9ho, )=/ 2 (Sthi) |, 2 005 -
. . A 01
where( .. .) is the expectation value and consider it as the 0

response functiofs]. g(hy,I')<1 by definition. Resonance -0.15

will imply a maximum value ofg(hg,T’). 0
Stochastic resonance is a process induced by fluctuation.

In a system which undergoes a continuous phase transition, FIG. 1. Local magnetization shows an oscillatory behavior

the fluctuations are maximum at the critical point. However,about(a) a nonzero value for small fluctuations, afig zero for

SR is expected away from criticality where fluctuation is large fluctuations. The amplitude of the oscillations decreases after

lesser. This is because at the critical point, the correlatiofieaching a maximum. The data are shown fo¢-a16 system with

length diverges and all other length scales are irrelevant. But=8 andho/J=0.1.

for spatial SR to occur, the spin correlation length should

equal the imposed spatial modulation. The latter being finitelength A, one needs to create smaller number of domain

SR will occur in a regime away from the critical point. This walls and hence lesser amount of fluctuation is needed. The

is confirmed in our results. phase boundarieF.(hy) show opposite behavior as with
We conduct a numerical study by diagonalizing theincreasing\, one needs larger amount of fluctuations to de-

Hamiltonian matrix for finite chains using Lanczos method.stroy the ordef10]. For a comparison of ; andI'r, we

The system sizes are restricted to multiples of the wavehave also shown the phase boundary lineNer2 in Fig. 3.

length A of the field. We obtain results for system sizés Another quantity which we study is the value of the pa-

<18 with periodic boundary conditions. In Fig. 1, we show rameterg(h,,I') at I's. This shows a very interesting be-

how the spins orient spatialighe z components of the spins havior. It varies linearly withh, up to a limiting value and

are shown, to which the external periodic field is couplsl then shows a nonlinear behavior, increasing faster than a

the noise is increased for a constant valudgflt is inter-

esting to note that even when the fluctuations are small sc 0.4

that a ferromagnetic order exists, the local magnetization A=4
shows a modulation with wavelength about a nonzero 012" F L iy
value. Beyond the ferromagnetic phase, it oscillates abou 01 g
zero. The modulations will increase with the noise, as ex- 0.08 L
pected and then decrease beyond a certain point. g(ho,T) _
In Fig. 2, we show how the response functigthg,I’) 006" —g 790 )
behaves with the increasing quantum fluctuatidiJ): it 0.04 - e
shows a maximum at a certain valuelof I'r . The position 0.02 /
of the maximum and the value af depend on the wave- oLatdo® , , ,
length as well as on the field strength. 0.5 1 r/s 15 2 2.5
The behavior of'z/J with the fieldhy/J is shown in Fig.
3 for different values of the wavelengthig is not defined for FIG. 2. Typical behavior of the response to a spatially periodic

ho=0 andl'g=0 for hy/J=4/\ where the system naturally external field as a function of the quantum fluctuations for different
orients along the field. It may be noted that as the wavewavelengths are shown. The valueshgfJ are small < 10"1) and
length is increased, the resonance occurs at lower values @ffferent for each of the curves and no systematics is expected. The
I'. This is quite easy to understand: for increasing wavemaximum value ofy indicates the resonance.
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FIG. 3. I'r/J lines for different wavelengths. The values of FIG. 5. Values ofl'g/J are shown against keepinghg\/J

ho/J wherel'z/J—0 correspond td,/J=4\. The solid line de-  constant in order to compare the results. The behavior is nonmono-
notes the phase boundary for A=2. tonic for largeho\/J.

power law(Fig. 4). This can be interpreted as the existence,
e e b e T o e scomen i 0O Vlues f lose o 3/ bl 0 eect
g : other modulations barring that of. Thus, any nontrivial

A. Beyond this limit, the unperturbed energy Iapdscap(_e piC'behavior of the magnetizatiae.g., steplike structures, ejc.

Scfs definitely a feature unique to time dependent fi¢ld& 1],
%s was emphasized in R¢¥] and absent for spatially peri-
odic fields.

The results shown in Figs. 1-5 are fol=12 for A
=12, N=16 for A values 2, 4, 8, and 16 arld=18 for A
=6,18. The finite size effects are negligible and not shown.

The general features of the spatial stochastic resonance
occurring in the quantum Ising model at zero temperature are

e&ualitatively similar to those of the classical Ising mofl

The comparison o'y and I'; is a unique feature of the
guantum system, as no finite temperature phase transition
"Uxists in the classical one-dimensional model. However, sto-
fhastic resonance does not require that the system should

. : undergo a phase transition. Also, it is not imperative that SR
beyond\ =4. Our explanation for the above is that for very ;. J1a_dimensional quantum system and two-dimen-

low value ofx, the field amplitude is very strong at high gjong| glassical system be identical as SR is not a critical

values ofhg\ and thus one needs a smaller amount of ﬂuc'phenomena.

tuation to achieve resonance. This is again a feature of the |, summary, we have studied the phenomenon of spatial

strong field regime. Perhafi)/J is not the proper param-  gyqchastic resonance in a guantum modéla and found

eter to keep constant and compare results here. Apparenth, i S can be realized in this model where the fluctuations

I'r/J decays exponentially with for large) values in the 516 entirely quantum in nature. The response of the system

weak field regime. . L ) depends on the field amplitude and the wavelength. Reso-
At the multiphase point, the domain sizes are multiples ofy5 e js achieved at values of the transverse field higher than

A/2. Close to the multiphase point, one could expect correjs critical value where the order-disorder transition occurs.

— . — . The maximum response behaves differently in the so-called

lations other than that of the field to manifest. We investigate

is less than 0.6 fon=2 and 4, it rapidly approaches unity
for higher values oh.

In order to study how the value dfg/J varies with the
wavelength, we plol'g/J against\ for the same value of
ho\/J. The reason for keepinggA/J constant is thahg\
determines the limiting value di, and could be used as a
standard to compare results corresponding to different valu
of A. The results are shown in Fig. 5. For valueshgi/J
much lesser than 4;z/J shows a monotonic behavior. For
larger values close to the multiphase point, there is a
anomaly and the monotonic behavior is lost in the sens
I'r/J first increases withh and regains its decreasing nature

1k J weak field and strong field regimes. We could not detect any

4? & ] oscillations of the local magnetization with periodicity dif-

o 4t O ferent from that of the external field even close to the highly

oB, +T ¢ .1  degenerate multiphase point.
9("0’FR)0_1 | a P o+ N 6% T The reason we could observe quantum stochastic reso-
o 4 * o E nance at zero temperature are twofold: first, the quantum
o> A=2 < ] . . .

o o5 ) A=4 & ] model we consider may be special. Second, the spatial and

+ S onzs B ] temporal fields signify entirely different processes of sto-
0.01 % ! chastic resonance. Whether it is possible to obtain QSR in a

01 ho/J 1 field periodic in time for the transverse Ising model will be

an interesting study and confirm whether the first conjecture
FIG. 4. Maximum value of the response is shown against thdS correct. The ground states of the transverse Ising model

amplitude of the field. It shows a linear behavior up to a limiting and the quantum double well system are equivalent and the

value of the field. counterintuitive feature like coherent destruction of tunnel-
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ing is present in botii2,7] when a field periodic in time is SR, there will be an inherent quantum dynamics in the

present. Also, a simple picture such as Fig. 2 is unlikely tomodel. The dynamics of domain growth could be an inter-

exist in the presence of a time dependent periodic field, assting study which in this case may be called a local nucle-

there are indications of additional nontrivial oscillations of ation phenomena; the domains will be finite in size due to the

the magnetization in quantum spin modgIsl1]. Hence, it presence of the spatially periodic external field.

seems that choosing the field periodic in space, rather than

considering a specific quantum system, is responsible for ob- The author is grateful to S. M. Bhattacharjee for a critical

serving quantum stochastic resonance analogous to the clagading of the manuscript and to B. K. Chakrabarti for dis-

sical case. cussions and comments on the manuscript, and also for
Although we are interested in the static results only forbringing Refs[7] and[11] to notice.
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